Média móvel exponencial - EMA BREAKING DOWN Média móvel exponencial - EMA As EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preço percentual (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências a longo prazo. Os comerciantes que empregam análises técnicas consideram que as médias móveis são muito úteis e perspicaz quando aplicadas corretamente, mas criam estragos quando usadas incorretamente ou são mal interpretadas. Todas as médias móveis comumente usadas na análise técnica são, por sua própria natureza, indicadores de atraso. Conseqüentemente, as conclusões extraídas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, no momento em que uma linha de indicador de média móvel fez uma mudança para refletir um movimento significativo no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar esse dilema até certo ponto. Como o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação do preço um pouco mais apertado e, portanto, reage mais rápido. Isso é desejável quando um EMA é usado para derivar um sinal de entrada comercial. Interpretando o EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha indicadora EMA também mostrará uma tendência de alta e vice-versa para uma tendência descendente. Um comerciante vigilante não só prestará atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, como a ação de preço de uma forte tendência de alta começa a achatar e reverter, a taxa de troca de EMAs de uma barra para a próxima começará a diminuir até que a linha do indicador aplique e a taxa de mudança seja zero. Devido ao efeito de atraso, até este ponto, ou mesmo algumas barras anteriores, a ação de preço já deveria ter sido revertida. Portanto, segue que a observação de uma diminuição consistente na taxa de mudança da EMA poderia ser usada como um indicador que poderia contrariar ainda mais o dilema causado pelo efeito de atraso das médias móveis. Os usos comuns das EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos no mercado e avaliar sua validade. Para os comerciantes que comercializam mercados intradía e de rápido movimento, o EMA é mais aplicável. Muitas vezes, os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intradiários pode ser trocar apenas pelo lado longo em um gráfico intradía. A abordagem EWMA possui um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para este fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e divulgado em 1994, usa o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em uma variedade de variáveis de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante Valor: valor estimado em risco Impulsionado significativamente pelo sistema JP Morgans RiskMetrics com técnica de previsão EWMA (média móvel ponderada exponencial), o valor em risco (VaR) tornou-se uma medida popular do grau de vários riscos na gestão de risco financeiro. Neste artigo, propomos uma nova abordagem denominada EWMA distorcida para prever a mudança da volatilidade e formular um procedimento adaptativamente eficiente para estimar o VaR. Diferentemente do JP Morgans standard-EWMA, que é derivado de uma distribuição gaussiana e do robusto EWMA de Guermat e Harris (2001), de uma distribuição de Laplace, motivamos e derivamos nosso procedimento EWMA distorcido a partir de uma distribuição assimétrica de Laplace, Onde tanto ascilação quanto as colas pesadas na distribuição de retorno e a natureza variável do tempo delas na prática são levadas em consideração. É sugerido um procedimento baseado em EWMA que adapta adequadamente o parâmetro de forma que controla a aspereza e a curtose na distribuição. Os resultados de backtesting mostram que nosso método proposto de EWMA distorcido oferece uma melhoria viável no VaR de previsão. Se você tiver problemas ao fazer o download de um arquivo, verifique se você possui o aplicativo apropriado para vê-lo primeiro. Em caso de problemas adicionais, leia a página de ajuda IDEAS. Observe que esses arquivos não estão no site IDEAS. Seja paciente porque os arquivos podem ser grandes. Documento fornecido pela Universidade de Sydney Business School, Discipline of Business Analytics em sua série de documentos de trabalho com o número 012010. Ao solicitar uma correção, mencione o item de itens: RePEc: syb: wpbsba: 21238170. Veja informações gerais sobre como corrigir o material no RePEc. Para questões técnicas relativas a este item, ou para corrigir os seus autores, títulos, resumo, informações bibliográficas ou de download, entre em contato: (Artem Prokhorov) Se você é o autor deste item e ainda não está registrado no RePEc, nós o encorajamos a fazê-lo aqui. Isso permite vincular seu perfil a este item. Ele também permite que você aceite citações em potencial para este item sobre o qual não temos certeza. Se as referências faltam completamente, você pode adicioná-las usando este formulário. Se as referências completas listarem um item que está presente no RePEc, mas o sistema não ligou a ele, você pode ajudar com este formulário. Se você souber de itens faltantes citando este, você pode nos ajudar a criar esses links, adicionando as referências relevantes da mesma maneira que acima, para cada item referente. Se você é um autor registrado deste item, você também pode querer verificar a guia de citações em seu perfil, pois pode haver citações em espera de confirmação. Observe que as correções podem levar algumas semanas para filtrar os vários serviços do RePEc. Mais serviços Siga as séries, periódicos, autores amplificar Novos artigos por e-mail Inscreva-se para novas adições ao RePEc Inscrição do autor Perfis públicos para pesquisadores de Economia Vários rankings de pesquisa em campos relacionados à economia de amplificadores Quem foi um estudante de quem, usando RePEc RePEc Biblio Curated artigos amp Artigos sobre vários temas de economia Carregar seu papel para ser listado em RePEc e IDEIAS EconAcademics Blog agregador para pesquisa econômica Plágio Casos de plágio em Economia Papéis do mercado de trabalho RePEc série de papel de trabalho dedicada ao mercado de trabalho Fantasy League Imagine que você está no comando de uma economia Serviços de departamento da StL Fed Data, pesquisa, amplificador de aplicativos mais do St. Louis Fed
No comments:
Post a Comment